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Sufficient stability conditions are derived for a zonal flow on the P-plane or the sphere. 
Two conditions guarantee both shear stability (to perturbations with vanishing zonal 
average) and inertial stability (to longitude-independent perturbations). These 
conditions are not restricted to normal-mode disturbances, and are derived without 
making use of the quasi-geostrophic approximation. The main limitation of the model 
is to have only one layer. 

On the P-plane, the conditions are : (i) that the product of the meridional gradient 
of potential vorticity and the difference between an arbitrary constant and the zonal 
velocity be everywhere non-negative ; and (ii) that  the absolute value of this difference 
be nowhere larger than the local phase speed of long gravity waves. Inertial stability 
is independently assured if the Cariolis parameter and the potential vorticity are 
everywhere of the same sign (this well-known condition can be easily violated near 
the equator, but the flow may nonetheless be stable). 

If the meridional gradient of potential vorticity has everywhere the same sign, then 
conditions (i) and (ii) can be shown to be consequences of the conservation of a total 
pseudo-energy E, and pseudomomentum Po, defined so that their lowest-order 
contribution is quadratic in the deviation from the fundamental state (even in the 
case that the perturbation is longitude-independent). Thus, if there exists a value of 
a such that the integral of E, - aP, is positive-definite, then the flow is stable. I n  this 
case, the stability conditions are valid for small, rather than infinitesimal, 
perturbations. 

The parameters of stable flows, as guaranteed by these conditions, are investigated 
for the family of Gaussian jets centred a t  the equator; both the cases of an unbounded 
ocean and a semi-infinite ocean, poleward from a zonal wall, are considered. Easterlies 
with the width of a Kelvin wave and westerlies with that width or wider may be 
unstable, even though the gradient of potential vorticity is positive for any strength 
of the jet. 

1. Introduction 
It is now a little over a century since Rayleigh (1880) showed that a parallel flow 

U(y) without inflexion points is stab1e.t Kuo (1949) generalized this result to the 
non-divergent case with rotation: a sufficient condition of stability is that the 
gradient of absolute vorticity, P-aYV U ,  does not change sign. (The notation is 
standard and is detailed in 91.1.) Lipps (1963) further extended the theorem by 
including divergence effects : stability is assured when the gradient of potential 

(1) 
vorticity (a,&),, = [P-aYy 

t Fjertoft (1950) strengthened Rayleigh’s criteria showing that if, say, a,, U = 0 at y = y*, but 
[ U(y) - U(y*)]  aYy U 0 everywhere, then the flow is stable. See Drazin & Howard (1966) for a 
review of stability conditions, including extensions of the Rayleigh-Kuo criteria to non-parallel 
flows. 
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does not change sign. Unfortunately, since Lipps needed the quasi-geostrophic 
approximation in order to  derive ( l ) ,  i t  becomes invalid near the equator and/or when 
divergence effects are too large, as does its generalization to the fully three-dimensional 
flow. 

The most important difference between equatorial and extra-equatorial dynamics 
is due to the divergence of the horizontal flow : non-divergent motion is governed, 
a t  any latitude, by the equation of absolute vorticity conservation, in which fo plays 
no role. (The variation of /3 with latitude is certainly of no dynamical importance.) 

Philander (1976, 1978) has investigated the relative importance of the p and 
divergence effects on the stability of typical currents in the tropical oceans, mainly 
via the numerical solution of the eigenvalue problem. The author finds that both /3 
and divergence stabilize eastward jets and may destabilize westward currents. 
Moreover these effects are enhanced as the equator is approached and ageostrophic 
phenomena become important. 

Hughes (1979, 1981) presented in instability mechanism for the equatorial under- 
current based on the existence of two different flows for a given potential- 
vorticity-stream-function relationship. The author shows that the narrower of the 
two currents is unstable and supercritical to Kelvin-like perturbations, exactly the 
opposite being true for the wider solution. 

Semtner & Holland (1980) have also found a barotropically unstable equatorial 
undercurrent in a numerical model of tropical circulation. ‘The type of instability was 
identified via an energy-flow calculation. 

None of these authors quotes a stability condition appropriate to low latitudes. 
Miyata (1981) found one, which is essentially a generalization, including the effect 
of rotation, of Blumen’s (1970) work on the instability of two-dimensional com- 
pressible flow (a problem that can be related to  the two-dimensional incompressible 
but divergent one). Blumen’s and Miyata’s conditions are particular cases of the 
more general one that is reported here. The generality of the condition in this 
paper is crucial for the determination of the stability of equatorial currents (e.g. 
Miyata’s result does not guarantee the stability of an eastward jet, no matter how 
small its amplitude may be.) 

I n  addition to the above mentioned shear instability (i.e. to perturbations with 
vanishing zonal average) a geophysical fluid may be subject to  intprtial instability (to 
longitude-independent perturbations), as predicted by Rayleigh (1916). The necessary 
condition for inertial instability on the P-plane (viz that the potential vorticity and 
Coriolis parameter have opposite signs in some region) is the same a t  mid-latitude 
or in thc equatorial zone. However, this typc of instability is more likely to occur 
in thc latter case, owing to the smallness of the Coriolis parameter ; a Rossby number 
of order unity is required for this process to  take place. Apparently, this phenomenon 
has not gained the attention of oceanographers in the study of the tropics (e.g. this 
author is not aware of any calculation showing whether thc South Equatorial Current 
is inertially stable or not). Some recent contributions to  the subject in the atmospheric- 
sciences literature are those of Emanuel (1979), Busse & Chen (1981a, b )  and 
Dunkerton (1981). 

The rest of this section is devoted to the presentation of the model equations and 
an a priori scale analysis, included with the purpose of stressing the differences 
between the equatorial and mid-latitude cases. The stability conditions in the P-plane, 
deduced in 92, are used in 93 to study the stability of a Gaussian jet, are related to 
the energy-pseudomomentum conservation in Q 4 and, finally, are generalized to the 
case of a sphere in 95. A general discussion is given in $6. 



Zonal $ow on the P-plane or the sphere 465 

This work is meant as a step in the investigation of the stability of equatorial 
currents. Owing tJo the extreme simplicity of the vertical structure of the model, the 
temptation to  relate its results to the ‘real world’ will be resisted. The restriction to 
only one layer is a strong limitation because it requires the perturbation to have the 
same vertical structure as the fundamental flow. Hence a comparison with 
experimental data will be made once the model is extended to the case of three- 
dimensional flow. 

1.1. The model 

We work with the model of the simplest vertical and horizontal structure, viz one-layer 
in the P-plane. The free and inviscid evolution of the system is governed by 

D,u-fW+g,d,h = 0, P a ) ,  

D,v+fu+g,d,h = 0, (2bL 

D,h+h(d,u+a,v) = 0, (2c) 

where D, = 3, + u a, + w au. Here (u, v) and (x, y) are the (eastward, northward) 
velocities and coordinates, h is the layer depth, gr is the reduced gravity (or the 
gravity), and f is the Coriolis parameter (f = f ,  +By, where f ,  and P are constants). 

The reduced gravity and mean depth kare used to define the ‘separation constant ’ 
c = (grk):, which is, in general, a more useful parameter than gr and 6. Particular 
solutions of the linearized version of (2) are the zonally propagating Kelvin waves, 
for which v = 0, u is in geostrophic balance and has the structure u cc exp ( - f ” / 2 P c ) ,  
and the eastward phase speed is equal to c .  (If f ,  =t= 0, this solution requires a wall 
at, y = 0, with the ocean poleward from the boundary.) The deformation radius is 
defined as the e-folding length of such a Kelvin wave, namely 

The value of R provides a lengthscale, while &IR2 is a speed scale for rotational 
(Rossby) perturbations. I n  the equatorial P-plane, f ,  = 0, 

R R, = (2~//3)+, (4) 

and &PR2 coincides with the speed scale c for inertia-gravity perturbations. I n  the 
mid-latitude P-plane, on the other hand, R - c/ I f o  I (this requires f :  %- 4Pc and implies 
R 4 2 I f ,  I /P ,  $3R2 4 c). Figures 1 and 2 show the dependence of R upon the latitude 
(for different values of c) and of R, upon c. 

The zonal current U(y), whose stability is investigated, must be in geostrophic 
balance in order to be an exact solution of (2), i.e. 

f U t g , a , H  = 0, ( 5 )  

where H ( y )  is the layer depth in the fundamental state. The potential vorticity of 
this flow is given by 

(6) 
f -  a ,  ii Q=H’ 

and its meridional gradient is then found to be 

Note that the expressions between squarc brackets on the right-hand sides of (1) and 
(7) differ by O ( U z ) .  
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FIGURE 1 .  Deformation radius for P-plane dynamics at different latitudes. The values of the 
separation constant c are typical oceanic values for the external arid the first three internal modes. 
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FIGURE 2. Deformation radius for the equatorial P-plane, as a function 
of the separation constant c. 

Let us estimate the amplitude of a jet strong enough to  change the sign of the 
meridional gradient of potential vorticity, for both ( 1 )  and (7).  We assume 
la,, UI N I U l / L 2 ,  where L is the lengthscale for the variations of U(y), and perform 
a similar scaling in ( 5 ) ,  neglecting factors of 2. If fQ z f,2/hin the region of interest, 
then ( 1 )  and (7 )  are essentially the same, and the amplitude predicted by the 
quasi-geostrophic approximation is correct. I n  order for this to  happen, i t  is sufficient 
that the following three inequalities hold : 

If01 % PL, If01 % layUI,  L 9  IH-LI. b ,  c) 
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I n  the core of the jet we have aYv U - - U / L 2 .  At mid-latitudes, a flow strong 
enough to change the sign of the gradient of potential vorticity must havc an 
amplitude, according to ( l ) ,  of order 

PL2 U -  - 
1 + ( L / R ) 2 ’  

where R x c / l  f o l .  Conditions (8b,  c )  are then just consequences of (8u), since 

(9) 

Therefore, if ( 8 a )  is satisfied, the quasi-geostrophic approximation gives the right 
amplitude in this case. 

I n  the equatorial region, on the other hand, a flow strong enough to change thc sign 
of a,Q in the core of the jet must have an amplitude of order 

PL2 
1 + (L/Ro)4’  

U -  - 

where we have assumed fQ - (/lL)2/hin (7 ) .  (Iff& - 0, then (12) should bc replaced 
by U - -,8L2.) Moreover, the geostrophic balance ( 5 )  implies 

Consequently, for a current with the width of a Kelvin wave, or wider, (8c)  is not 
satisfied, i.e. ageostrophic divergence effects must be important, and the scaling 
fQ - (PL)2/h might be incorrect, owing to the large variations of H(y). (Note that 
PL/ 18, U J  - 1 + and thus ( 8 b ) ,  with 1 f o l  - PL, is satisfied for currents wider 
than a Kelvin wave, even though (8a ,  c )  are violated.) 

In the edge of the jet, we have a,, U - U / L 2 ;  divergence and p-effects have the same 
sign in the gradient of potential vorticity (assuming that fQ 2 0). As a consequence, 
the factors [i + . . .] should be replaced by [ - 1 + . . .] in (9)-(13): the scaling predicts 
extremely large amplitudes if L z R (the quasi-geostrophic approximation is invalid 
for such a strong flow). Note that (9) and (12) predict a westward flow for instability 
a t  the core of a jet of any width or (replacing 1 + . . . by - 1 + . . .) at the edge of a 
wide jet ( L  > R) ,  and eastward flow a t  the edge of a narrow jet ( L  < R ) .  

In  summary, extrema of potential vorticity may be expected at  the core of easterlies 
of any width, and at the edge of narrow westerlies or wide easterlies (the widthscale 
is the local deformation radius). The quasi-geostrophic approximation gives the 
right amplitude for narrow jets ( L  4 R )  a t  any latitude (for which divergence is 
unimportant, and Kuo’s criterion applies) or wide easterlies ( L  B R )  narrower than 
the ‘distance t o  the equator’ ( L  4 \ f o \ / P ) .  

There are flows without extrema of potential vorticity, independently of the 
strength of the current. For instance, wide westerlies or narrow easterlies without 
a ‘ core ’ (e.g. a current profile without inflexion points, trapped poleward from a zonal 
wall). It is interesting to see if such flows might, nevertheless, become unstable. 
Stability studies based on the primitive equations, rather than the quasi-geostrophic 
approximation, are needed to answer this question, as well as to investigabe the 
dynamics of tropical currents. 
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2. Stability conditions in the P-plane 

given by U ( y )  in the zonal direction, and depth H(y) .  More precisely, writing 
The problem we are concerned with is the linear stability of a system with velocity 

u = U(y)+u’(x ,  Y,t)+O(€’), (14a) 

v = w’(z, y ,  t )  + 0(E2), 
h = H(y)+h’(x ,  Y,t)+O(€’), 

where ( U ,  H )  = &(eo), (u’, w’, h’) = O ( E )  and E 4 1,  we search for the conditions that 
( U ,  H )  must satisfy in order for (u’, v‘, h’) to  be bounded in time. The evolution of 
the perturbation fields is controlled by 

(a t+Ua, )u’ -QHv’+g,a ,H = 0, 115a) 

(a,+ ua,)v‘+fu‘+g,a,H = 0, 

(a, + ua,) h’ + a,(u’H) + a,(v’H) == 0. 

Two cases are allowed for the zonal structure of the perturbation, namely 

(u‘) = (v’) = (h’) = 0 (shear instability), ( l e a )  

B,u’ = dxv’ = a,h’ = 0 (inertial stability), (16b)  

where ( ) denotes zonal average. (The notation, considering ‘shear’ and ‘inertial’ 
instabilities as different things, corresponds to that used by Busse & Chen (1981 a ,  b). 
Unfortunately, in the literature both terms are sometimes used with the same 
meaning.) 

The nonlinear system under consideration satisfies many conservation laws (Ripa 
1982), particularly those of potential vorticity, total energy and total zonal 
momentum, which take the form 

D,q = 0,  J d y ( E )  = const, S d y ( M )  = const, (17a, 6, c) 

where 

are the potential vorticity and the energy and zonal momentum densities. (It is easier 
to see the physical meaning of the term -v2//3 in M using spherical coordinates: 
it represents the variation of the earth’s zonal velocity with latitude; see (77) below. 
The equations ‘on the fl-plane’ resemble more those of a charged particle on a 
magnetic field than a rotating frame (because curvature effects are retained only 
in f ) :  the momentum of such a particle is mv+A,  and not just mv, where A is 
the vector potential of the magnetic field (times the charge of the particle). This 
analogy provides another interpretation of the term -v2/lp in (18c), because 
curl ( - i f2 /P,0,O)  = (O,O, f ) . )  

From (15) we obtain for the perturbation 

cat+ Ua,)q’+v’a,g = 0, 

Jdy[at(E)+H’U(q‘w’)] = 0, 

S dy [d,<M’) + HZ(q‘v‘)] = 0, (194 
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where q’ = (a,d -a ,u‘-Qh‘) /H,  (20a) 

E’ = +[H(~’~+v’~)+2h’u’U+g,h‘2], 

M = h’u’. 

(Equations (17b)  and (19b) are true even in the presence of arbitrary rigid boundaries 
with vanishing normal flow. For (17c)  and (19c) to be valid, however, the walls must 
be along parallels of latitude, i.e. with the same symmetry as the model equations 
and fundamental flow.) 

Note that, unlike in the quasi-geostrophic case, E is not positive-definite.? 
However, i t  can be shown that if the flow is subcritical everywhere, i.e. if 
U ( Y ) ~  < g,H(y) is satisfied for all values of y, then E 3 0. Moreover, this can be 
generalized in the form 

(21) 

where a is any real constant with dimensions of speed. 

state, viz 

The general solution of (19a) has the form 

[U-aI2 < g,H*E’-aM’ 3 0, 

Let A ( z ,  y, t )  to the O ( E )  meridional displacement with respect to  the fundamental 

(22) v/ = (a ,  + ua,) A .  

P’ = FIX- U ( y ) t ,  Y I - A ~ , Q ,  (23 )  

(q’v‘) = at(FA-gA2ayQ).  (24 1 

where F ( x ,  y) is arbitrary (note that (a,  + Ua,) F = 0). Using (22) we obtain 

Since F is bounded in time (e.g. the zonal average of any function of F is time- 
invariant), the term ( F A )  may be neglected in establishing the stability of the funda- 
mental flow. (For instance, for each eigensolution of the form (u’, v’, h’) K exp ( -  iwt) 
with Im ( w )  =+ 0, then (q ‘ )  = 0 (for shear instability) requires F = 0, whereas 
for inertial instability F is time-independent.) Combining (196, e )  and (24 ) ,  we get 

Jdy( (E’-aM’)+$H2(a-  U)8 ,QA2)  = const. (25) 

Therefore, if there exists a value of a such that the left-hand inequality in (21) is 
satisfied, and [a- U(y)] a,Q(y)  2 0 for all y, then (25) means that a sum of quadratic 
and positive-definite functionals of (u’, v‘, h’) is time-independent, and consequently 
the amplitude of the perturbation is bounded. Whence, we can state the following 
THEOREM : 

$ there exists any value of a such that 

The stability condition found by Miyata (1981) corresponds to  that of ( 2 6 )  for the 
particular case a = 0, which in turn reduces to that obtained by Blumen (1970) if 
f = 0. It is shown below and with the example of $3  that the freedom in the choice 
of the value of a makes ( 2 6 )  a more powerful condition. (Incidentally, the equation 

t However, E = ~ H ( u ‘ ~  +d2)  ++g,h’2, which is not the O(?) contribution to E, ispositive-definite, 
and Jdy[d,(E”)+Ha,  U(u’w’)] = 0 is related to eddy driving through Reynolds stress terms 
(Griffiths, Killworth & Stern 1982). If 8,Q =!= 0 then E” is the lowest-order contribution to E,--P,, U 
(§4). 
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(26) for a + 0 cannot be obtained from the same equation with a = 0 via a Galilean 
transformation, simply because the system (2) is not Galilean invariant.) 

Weaker sufficient stability conditions are obtained as corollaries of (26) : viz 
choosing a = max ( U ) ,  which results in 

d,Q 2 0 for all y (condition ( i ) ) ,  (27 a )  

max ( U )  d min [ U + ( g , H ) + ]  (rondition (ii)); (27 6 )  

d,Q d 0 for all y (condition (i)) ,  (28a)  

min ( U )  2 max [ U -  (grH)i] (condiiion (ii)). (28 6 )  

or making u = min ( U ) ,  which yiclds 

Finally, these two corollaries of (26) may be combined into an even weaker stability 
condition, using max ( A  + B)  d max ( A )  + max ( B )  and min ( A  + B )  2 rnin ( A )  + 
min ( B ) :  

viz duQ docs not change sign (condition (i)), (29a)  

max (U)-min ( U )  < min (grH)i (condition (ii)) ; (296) 

i.e. if the gradient of potential vorticity does not change sign and the total change 
of partick velocity is smaller than the minimum phase speed of long gravity waves, 
then the flow is stable. If the maxima and minima of H and U occur a t  the same 
latitudes, as in the example of 93, then (29) is equivalent to (27) or (28) (depending 
on the sign of dyQ). 

Conditions (26), (27) and (29) are equivalent for the example of $3. However, in 
principle, the set (26) is stronger than (27), (28) or (29). For instance, thcrc might 
be a flow for which, say, d,Q is positive for y > y* and negative for y < y*. If, in 
addition, U ( y )  < U(y*) for y > y* and U ( y )  2 U(y*)  for y < y*, then (26a) is satisfied 
for u = U(y*). Consequently, if (26b) is also satisfied for the same value of u, then 
the flow is stable, even though condition (i) is not fulfilled. 

The non-divergent case may be formally obtained making g, + CO. Condition (26b)  
is then trivially satisfied and (26a) reduces to  the theorem of Fjartoft (1950) (with 
a equal to the value of U a t  the inflexion point), or to that, of Kuo (1949) and Rayleigh 
(1880) (with a outside the range of U ) ,  since d,Q cc P-dyY U in this limit. Notice that 
for the mid-latitude case, the scaling in (9) implies 

I UI /C - ( P C l f I 3 A l  + (R/LYI < (PC/ f , ” ) ,  

i.e. (29b) is satisfied, and thus ‘ (a,Q),, does not change sign’ is a sufficient condition 
of stability for westward jets. 

Neither (16a) nor (16b) was needed in order to derive (25), and consequently the 
set (26), or any of its corollaries, gives sufficient conditions for both shear and inertial 
stability. For the latter, the more-classical condition (and independent from (26j j is 
derived as follows: Dropping all terms in which 8, appears, the-system (15) is easily 
reduced to 

(30) dttv’ +fQHv’- dyy(grHu’) = 0. 

Thus for an eigensolution such that v’ GC exp ( - i d )  it follows that 

w2 = Jdy VQH2I 21‘1 2 +  g, I d,(Hv’) I 2  Jdy HI v‘ 12, (31) 

fcf- 8, TI) 2 0 for all y (condition (iii)) (32) 

from which we obtain w2 2 min Gfcf-a, U ) ] .  Therefore, if 
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then the$ow is inertially stable. This condition takes the same form in the tropics and 
a t  higher latitudes (see e.g. Dunkerton 1981). (Note that w2 is real. For w 2  < 0,  the 
flow is unstable.) 

If U = 0, and thus H = h; the solutions of (30) are longitude-independent inertial 
waves (with eigenfrequencies w2 = (2n+ 1 )  pc, n = 0 , 1 , 2 ,  .. ., in the equatorial p- 
plane), which is consistent with the suggestion by Busse & Chen (1981 a ,  b )  of using 
the name ‘inertial instability’ for the case (16b), and not for the case (16a). 

If in (30) we approximate H x H ( 0 )  and d ,  U x a, U(0), then the eigensolutions 
are parabolic-cylinder functions with argument proportional to y - a, U/2p ,  and 
eigenfrequencies 

(Dunkerton 1981). The approximation is valid as long as (2n+ 1 )  (g,H)$/P < L2, L’2, 
where L and L’ are the lengthscales for the variations of 8, U and H respectively. 
Even though 8, U(0)  + 0 implies that  condition (iii) is violated sufficiently close to 
the equator (no matter how small Id,Ul may be), (33) shows that, in order for the 
flow to be inertially unstable, w2 < 0, i t  must be (8, U)2 > 4p(g,H)i. However, for such 
a strong shear it is not possible to neglect the variations of H ( y )  : from the geostrophic 
balance ( 5 ) ,  and assuming U(0) = 0, we get pL’3 - grH/8 ,  U ,  which is incompatible 
with (g,H)i/p < L’2; the approximations used to obtain (33) fail and therefore it is 
not clear whether the flow might be inertially unstable or not. 

I n  other words, (32) is also a sufficient, but certainly not a necessary, stability 
condition. I n  $ 3  we present some cases for which (32) is violated but the flow is proved 
to be stable using the set (29). The opposite might also be true, viz a shearly unstable 
but inertially stable flow, for which (32) is satisfied but not (26). 

w 2  (2%+ i)p(g,H)+- ($a, u)z ( n  = 0 , 1 , 2 , .  . .) (33) 

3. Example: the Gaussian jet 
As an example, consider the family of Gaussian jets 

- H = 1 + A  exp [ -9, ; U = ~ J A  exp [ -$I, 
li (34) 

where y = 0 represents the equator. The parameter h gives the maximum relative 
depth change, which occurs a t  the equator, and L is the e-folding half-width of the 
jet. (If h < - 1 there are two fronts a t  y2 = L2 In 1 hl; equatorward from these 
latitudes we define H ,  U = 0. This case is better represented by (35) below with 

An interesting property of this family of flows is that for L = R, (i.e. the structure 
of a Kelvin wave with vanishing zonal wavenumber) Q = f/kfor all y, and thus dyQ 
nowhere changes sign, no matter what the value of h may be. In  fact, for L 2 R, 
and h 2 0 (wide westerlies) a,Q > 0 for all y. Everywhere in this paper we use the 
words ‘wide ’ and ‘narrow ’ comparing the width of a jet with that of a Kelvin wave 
a t  the same reference latitude. 

The parameters of stable flows, as guaranteed by (27) and ( 3 2 ) ,  belong to the dark 
shaded regions in figure 3;  the details of the calculation are given in the appendix. 
The coordinates in parts ( a )  and (b)  of that figure are chosen so as to emphasize the 
parameters of wide and narrow jets respectively (i.e. by plotting H ( 0 )  us. L-l or U(0)  

Condition (27 b )  is, in this case, equivalent to choosing a = 0 for h < 0 and a = c 
> 0 in (26). Note that if in (26b) one only uses a = 0, as in Miyata (1981), then 

h = - 1 . )  

vs. L) .  

for 
the shear stability of eastward jets cannot be assured. 
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FIGURE 3 (a) .  For caption see facing page 

L < R, L = R, L % H, 
U ( 0 )  :er P L ~  c c 
H(O)/L-  1 he8 ( L I R ~ ) ~  1 WROY 
Y2 ;Lz - - 

H ( O ) / L -  1 - (L/R,)4 -4 (d5-  1) 
Y2 0 4 L2 

Condition (i)-(iii) (ii) 0) 

Condition (i) (ii) (ii) 

U(0) - gL2 --g(.\/5--l)c - et c2p3L2 

- 

TABLE 1 .  Critical amplitudes beyond which one or more of the stahility conditions is violated, and 
the latitude y where that happens (for conditions (i) or (iii)). Top and bottom panels correspond 
to westerlies and easterlies respectively. See figure 3. 
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FIGURE 3 .  Stability of a Gaussian jet centred a t  the equator. H ( 0 )  and U ( 0 )  are the equatorial depth 
and zonal velocity, and L is the e-folding half-width of the jet. For amplitudes in the dark shaded 
region the flow is stable, as guaranteed by conditions ( i )  (non-negative gradient of potential 
vorticity, (27 a))  and (ii) (subcriticality, (27 b ) ) .  Inertial stability is independently guaranteed by 
condition (iii) (same sign of planetary and potential vorticities, ( 3 2 ) ) .  Conditions (i) and (ii) are 
violated for amplitudes beyond the solid and dashed lines, respectively. Condition (iii) is violated 
in the light-shaded region. (The cases with H ( 0 )  < 0 actually represent a zonal front, with the active 
layer poleward from it.) 

The most restrictive stability conditions are : for narrow westerlies (i) ; for westerlies 
wider than L/Ro = 0-5799. .. (i i) ;  for narrow easterlies (i) and (iii); for easterlies 
with LIR, between 0-8409 ... and 1.5244 . . .  (ii); and easterlies wider than 
LIB, = 1.5244.. . (i). The extreme amplitudes for L -4 R,, L = R,, and L + R, are 
given in table 1 .  (The prediction of quasi-geostrophic theory, ( 1 )  withf, = 0, coincides 
with the entry in table 1 corresponding to L -4 R,,.) The solid curves in figure 3 show 
the scaling (1  2) and (13), as expected, for narrow westerlies and easterlies of any width 
(except near L = R,,). 
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FIGURE 4. (a )  For caption see facing page. 

3.1. Effect of meridional boundaries: the semi-inJinite ocean 

I n  order to compare the above results with those of extra-equatorial dynamics, we 
study the stability regions (as defined by conditions (i) and (ii) or (iii) of the jet (34) 
but restricting the domain of the model to an infinite semiplane. For a zonal boundary 
(or a front) a t  a certain latitude, where the Coriolis parameter and its northward 
gradient are fo and /3 respectively, we write 

the case f < - fo is clearly equivalent to this one. (We use f o  2 0, since for fo < 0 the 
stability regions are those of figure 3.) Note that if we redefine y so that f = by and 
fo = byo, then (35) becomes essentially (34). The inflexion point of the flow in (35) 
is a t  the latitude where pf = be, and it  therefore belongs to the domain of the model 
only if p < bc/f$. For p 6 /3c/f$ the jet has the shape of half a Gaussian curve, 
whereas for p % pc/f$ it has essentially an exponential offshore structure. 
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LIR 
FIGURE 4. As in figure 3, when the model’s domain is restricted to the infinite semiplane y 2 yo 
(or y < -yo) with yo = 02R,. Flows in the hatched region are stable, even though condition (iii) 
is violated. The local deformation radius and speed scale are given by, neglecting variations of /l 
with the latitude, R = 08198R0 and ?$R2 = 0 6 7 2 1 ~ .  

The parameter A represents again the maximum relative depth change, which 
happens a t  f = fo, and p determines the e-folding width of the jet as 

It follows from this expression that 

L = R  for p = l  

16 P L M  126 
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FIGURE 5 (a) .  For caption see facing page. 

The stability regions of the flow (35) are presented in figures 4 and 5, for two values 
of ft/pc. The details of the calculation are given in the appendix. 

The most striking difference with the unbounded case of figure 3 is the appearance 
(in figure 4) of two gaps, at L 2 0 and L 6 R, where the gradient of potential vorticity 
is always positive for any negative value of A (easterlies). If yo/Ro = 1 - 44 both gaps 
merge into one, and thus for 

yo /Ro  > 1 - 4; % 0.2929 (38) 

the gradient of potential vorticity is positive for any narrow easterly (as it is for any 
wide westerly, independently of the value of yo) ; see figure 5. The extreme amplitudes 
for L < R, L = R, and L + R are given in table 2. The only difference with the results 
in table 1 is in the first column: very narrow eastward or westward jets. 

A front a t  the latitude yo, with the active layer poleward from the front, may be 
represented by (35) with A = - 1 ( H ( y o )  = 0). One such front is outside the stability 
region in figures 4 and 5 (see also table 2). 
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I I I I 
1 2 3 

U R  
FIGURE 5 .  As in figure 4, for yo = Rn. The local deformation radius and speed scale are given by 

R = 0.4142R0 and '$R2 = 0 1 7 1 6 ~ .  

L = R  

1 
c 

(ii) 

-g5: -  1 ) c  
-4(5$-1) - 

(ii) 

TABLE 2 .  As in table 1 for the model restricted to y 2 yo .  See figures 4 and 5.  For narrow easterlies, 
the flow is stable up to  the amplitudes in I.. .], even though condition (iii) is violated at a much 
smaller amplitude. 

16-2 
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Paldor (1982) proved explicitly the stability of a front in the f-plane, /3 = 0, for 
the particular case of constant-potential-vorticity basic flow. This system may be 
generalized to the /3-plane by the case Q = f / h  (here kshould be taken as a ‘reference ’ 
rather than ‘mean’ depth). The ( U ,  H)-fields are given by (35) with h = p = - 1, 
and with the active layer equatorward from the fronts,fZ < f i .  (The structure is that 
of westward-propagating Kelvin mode in the limit of vanishing zonal wavenumber, 
or ‘anti-Kelvin’ wave in the curious notation of equatorial dynamieists.) The 
stability of this flow may easily be proved using (26) : since a,Q = /3/k 2 0, (26a) is 
satisfied for u 2 max ( U )  ( =  c ) ,  whereas (26b) holds for u = c ,  and thus the flow is 
stable. 

4. Stability and energy-pseudomomentum conservation 
The system (2) has only two integrals of motion that are, to lowest order, quadratic 

in [u, v, h-k], viz the total energy (17b)  and the total zonal pseudomomentum (Ripa 
1982) 

- h(qK-f)2 
d y ( P )  = const, P = u(h-h)---. 

2/3 
For the fundamental flow [u, v, h-h1 = [V,  0, H-k] in (34) i t  can be shown that 

where N = h2cLh($)t, and 
x2 exp ( -x2) 

l + h  exp ( - 4 ~ 2 , ’  

03 

I (h )  = n-?j-_rlx 

This integral is finite for any h 2 -1, and it may be calculated, for lhl < 1, 
expanding the right-hand side of (41) in powers of h (see figure 6). 

The eigenvectors [u,, w,, h,] that  result from linearizing (2) and substituting 3, by 
- iw  (viz (15) for U = 0, with H and QH replaced by k and f )  span an orthogonal 
and complete basis, which may be used to make the expansion 

(42) [u, 0, h-hl = c z,w [u,(x), v,W, h,(x)l, 

where the label a stands for the zonal wavenumber k, the meridional quantum number 
n, and a discrete index with (at most) three values (Ripa 1982).t An interesting 
property of this expansion is that the quadratic part of total E and P have a diagonal 
representation, viz 

J d y ( E )  = CIZ,12+O(Z3), J d y ( P )  = ~ s , I Z , ~ ~ + O ( ~ ~ ) .  (43% b )  

Here s, is the slowness of the ath expansion mode, and i t  satisfies s,c = 1 if a is 
a Kelvin mode and sac < 1 if i t  is not. 

For quasi-geostrophic flow a t  mid-latitudes there are no O ( Z 3 )  terms in (43), and 

t The symbol Z includes an integration in zonal wavenumber. The ‘summations’ in (43) and (67) 
run over physically different states, i.e. only one mode for each conjugate pair, with parameters 
(w ,  k) and ( - w ,  -k). Depending on the problem, jdz  should be used instead of ( ). For the details, 
see Ripa (1981a, 1982). 
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FIGURE 6. Integral (41) used for the evaluation of the total pseudomomentum 
of the fundamental flow. 

thus j d y  ( P ) / j d y  ( E )  represents an energy-weighted average slowness, which is 
conserved in virtue of (176) and (39a) (Ripa 1981a). As a consequence, if the 
fundamental flow is unstable, the modes in the expansion (42) of any growing 
perturbation must have values of s, both larger and smaller than dy (€')IS dy ( E ) .  
(For the case of non-divergent flow this is no more than a re-phrasing of Fjrartoft's 
(1950) theorem.) This result has been used for the problem of the stability of a 
finite-amplitude Rossby wave (Gill 1974; Ripa 1981 a) ,  including divergence effects. 

The normal modes [u,(x), v,(x), h,(x)]  for the case of quasi-geostrophic flow at 
mid-latitudes are the position-dependent parts of Rossby waves, which have 
sc < - f i /pc  ( 4 - 1). Therefore, a fundamental flow for which 

c j d y  (P>ljdY ( E )  = O(1) 

is stable to quasi-geostrophic perturbations. In  other words, in order for that flow 
to be unstable it must have such a large amplitude that the quasi-geostrophic 
approximation is not valid. This is, for instance, the case of the flow ( 3 5 )  with ,u = 1 ,  
for which Pc = E+O(h). 

For the fundamental flow (34), the expansion (42) only involves the longitude- 
independent geostrophic modcs, with meridional quantum numbers n = - 1, 1, 3, 
5, ... (Kelvin and ultralong Rossby 'waves'). (The modes with n = 2, 4, 6, ... are 
excluded owing to the symmetry of the flow, U(y) = U( -y).) Since for these modes 
s, c = - 2n - 1 ,  an idea of the energy spectrum of (34) is given by an ' average ' value 
of n, defined by 
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FIGURE 7 .  Mean meridional quantum number for the modal decomposition of the 

fundamental flow, as defined in (44). 

where both integrals are taken from (40). Thus, using h = 0 in both expressions 
between square brackets ( l (0 )  = $1, i t  follows that 

which satisfies % 2 - 1,  as i t  should. See figure 7 .  
Now, if the O ( Z 3 )  terms in (43) are negligible and the fundamental flow is unstable, 

then in the expansion (42) of any growing perturbation there must be components 
with s, 2 - (2n+ l) /c and components with s, < - (2n+ l ) / c  (or else 
sac = - (2%+ 1)  for all modes). Then for L = R,, % = - 1 ,  the jet would be stable for 
any h 3 - 1 ,  because there are no components with s,c > 1. (The possibility that 
all components have s,c = 1, Kelvin modes, is discussed in Ripa (1982).) This is the 
case in which the fundamental flow is a longitude-independent Kelvin mode, which 
is stable at least for values of h (= U(O)/c) between --- ' ,(d5- 1 )  ( x -0.6180) and 1 
(see table 1 ) .  Even though the flow may not be strictly sta,ble (for any A )  when L = R,, 
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the minimum amplitude required for instability is quite large (100 Yo or 62 yo depth 
change, see figure 3) ; in fact, large enough to make the O ( Z 3 )  terms in (43) important. 
Another ‘prediction ’ of energy-pseudomomentum conservation is that, for an 
unstable flow with L N R,, the Kelvin mode should be an energetic component of 
any growing perturbation. 

For L 6 R, or L % R,, on the other hand, % % 1 ,  and thus components with 
sac = O( 1 )  (inertia-gravity and Kelvin modes) should not gain much energy from the 
decay of an unstable jet. 

4.1. Pseudo-energy and momentum relative to the fundamental flow 
The zonal pseudomomentum density (39b) has the form 

hq2h2 
P = M--+ time-independent and divergent terms 146) 

2P 

(the latter are given by h [ f 2  + a,( fw)  - a,( fu)] .  Total P is conserved because the 
integral of M is time-independent, (17c), and so is the integral of hF(q) ,  with E’ an 
arbitrary function, by virtue of ( 2 c )  and (17a) .  (These conservation laws are related 
to the invariance of the system to zonal translations (Ripa 1981 b ) . )  The particular 
form of F(q)  in (47) was chosen so as to eliminate the linear term of M ,  
uk - (h -h ) f2 /2P ,  making total P a quadratic, to lowest order, functional of 
[u,w,h-h] (i.e. quadratic in the departure from the reference state 
[u = 0, w = 0,  h = El). This method may be used to construct pseudo-energy and 
momentum densities E, and P,, which are quadratic in the departure from the new 
reference state [ y  = U ( y ) ,  v = 0, h = H ( y ) ] .  Defining 

u = U+U’, v = v’, h = H+h‘, (47) 

where the fields (u’, w’, h’) are of any amplitude [i.e. there are no O(c2) terms as in 
(14)), and defining q‘ by (20a) ,  as before, it can be shown that 

q = Q+q’H/h (48) 

exactly. Therefore, for any function F(q) ,  

f d y  (hF(q)-HF(Q))  = f d y  Jh’LP(Q)-QF(Q)l+u’la,QF”(Q)I 
\ 

d 2  + - F ( Q ) H 2 + 0  
2h 

(the zeroth-order term HF(Q)  is clearly time-independent, and is subtracted for 
convenience). Let us seek a function F(q)  such that 

Po G M -  hF(q)  (50) 
is, to lowest order, quadratic in (u‘,v‘, h’). Using 

M = ( U -  f ‘/2/3) H +  ((1- f 2/2p)  h’ + u‘H+ u’h‘ 

and (49), the linear terms in jdy(P, )  are cancelled if and only if 
P2 

Q F ( Q ) - F ( Q )  = S- I / ,  (a,Q)F”(Q) = H .  
2P 

Taking the y-derivative of (51 a ) ,  we obtain (51 b ) ,  and thus the only condition for the 
existence of F is that the right-hand side of (51 a )  be a function of Q (i.e. that there 
exists the function y = y(Q)). Since d(f2/2/3- Ci)/dQ = QH/a,Q, 

a,g + o (52 )  
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must hold in order for F(Q)  to exist. In  the rest of this section we assume that this 
equation does hold. 

and choosing G so that the linear terms, in (u‘, v‘, h‘), of f d y ( E o )  vanish, it follows 
that G must satisfy 

Similarly, defining Eo = E+hG(p), (53) 

QG(Q)-G(Q) = g,H++U2, (a,Q)G(&) = - UH. (54a, b)  

Once again, (54b) is a consequence of (54a), and (52) must be satisfied for G to exist, 
since d(g, H +$U2)/dQ = - QUH/d,Q. (Incidentally, the relationship giving 
g,H+tUz as a function of Q is that used by Hughes (1979, 1981) in the study of the 
stability of thetequatorial undercurrent.) 

In  summary, and using (49), if (52) is satisfied, then F and G exist such that total 
P, and E, are conserved, with 

(55a) 

(55b)  

p - u’h’-l zp ’2H / a,Q+O(u’, ~ ’ , h ’ ) ~ ,  
0 -  

Eo = P, U+~(Hu‘2+Hv‘2+grH2)+O(u’ ,  v‘, h’)3 

(plus exact derivatives and time-independent terms). Note that the lowest-order 
contribution, in (u’, v‘, h‘), to E and M is not given by E’ and M’,  but, rather, by 
O(e)  terms (see (18) and (20)), which do not average out for longitude-independent 
perturbations. However, ( 2 5 ) ,  used to derive the stability conditions, is no more than 
the lowest-order contribution to 

jdy(E,-aPo) = const! (56) 
This result is important because it shows that ( 2 5 )  is not an artifact of the 
linearization in (14), but, rather, the lowest-order contribution of a true, nonlinear, 
conservation law. (There are examples in the literature of integrals of motion deduced 
for a linearized system which are meaningless for the fully nonlinear problem.) The 
derivation of stability conditions from integral conservation laws is a powerful 
method; e.g. because the results are not restricted to normal-mode infinitesimal 
disturbances but, rather, they are valid for any small perturbation. Similar techniques 
have been used by other authors in the study of problems more general than the one 
considered here (i .e., three-dimensional and/or non-parallel), but for systems 
somewhat simpler than the one in this paper (viz only the stream function is needed 
because the flow is plane). 

Drazin & Howard (1966) used the equivalent of jEodxdy  = const to derive the 
stability condition for non-parallel, plane and non-rotating flow ; see their equation 
(2.44). Blumen (1968) generalized this result, including rotation within the framework 
of the quasi-geostrophic approximation, using Arnold’s ( 1965) variational principle. 
(This principle may be cast, for the model of this paper, in the following way. If a 
function G(q)  may be found such that I{u, ‘u, h} = j { E +  hG(q)}dxdy is a local 
minimum a t  (u, v, h} equal to  some stationary flow, then that flow is stable because 
1 is an integral of motion. For the particular case of zonal flow, the conditions for 
I to be a minimum are (26a,  b )  with a = 0, and E+hG(y)  E Eo. )  

The stability of three-dimensional parallel flow has been studied by Bretherton 
(1966) and Blumen (1978), in the context of the quasi-geostrophic approximation. 
Bretherton’s equation (13) is the equivalent of the a-term (momentum) in ( 2 5 )  here; 
in his case the integral of h’u’ is neglected. Blumen’s equations (11) and (14) 
correspond to Eodxdy = const and JP,dxdy = const. 

We conclude this section by presenting a self-adjoint problem, whose eigensolutions 
may be used to expand the fields (u’, v’, h’), and such that the integrals of E,-P,U 
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and 8 have a diagonal representation, as E and P have in (43). The eigenvalue 
problem is 

(57 a )  

w,w,+iQHu,+g,ia,h, = 0, (57 b )  

@,ha + i aX(u,H) + i a,(v, H )  = 0, (57 c )  
with the ‘boundary ’ condition that the fields be bounded a t  infinity. The set (57) does 
not constitute the modal problem of (15) for the flow U(y); e.g. the latter is not 
self-adjoint (otherwise all flows would be stable to normal-mode perturbations). 
Taking the curl of (57a, b ) ,  we obtain 

w,u,-iQH~,+g,ia,h, = 0, 

(58a, b)  
axva - a, u a  - &ha 

H 
w,q,+v,ia,Q = 0, qa = 

Multiplying (57a, b and c) by Hub*, Hwb* and grhb*, subtracting the complex 
conjugate of the result after exchanging a and b, and integrating, we obtain 

(U,-wb*)jdxdy [Hub*ua+ HWb*V,+g, hb*h,] = 0. (59) 

For a = b,  the integral is positive, and thus any eigenvalue w, is real; it then follows 
that the integral vanishes if w, =!= wb. (These are, of course, general consequences of 
the operator in (57) being Hermitian, for a scalar product defined by the integral in 
(59).) Since different eigenstates corresponding to the same eigenvalue may be made 
orthogonal, we have 

~dxdy[Hub*u,+Hwb*wa+grhb*h,] = a(a, b ) ,  (60) 

where S(a, b )  = 0 if a =l= b. In  a similar way, from (57a, c )  and (58a) it follows that 

ub*h,+hb*u,--qb*qa = s,S(a, b ) .  a ,  H Z  Q I 
The basis (u,, w,, ha) is presumably complete, because the problem (57) is self-adjoint, 
and thus i t  can be used to make the expansion 

[ ~ ’ , ~ ’ , h ’ l  = zzz,(t) [ U a ( X ) ,  va(x) ,ha(x) l ,  (64) 
for any field (u’, w’, h’). Normalizing Z so that 2: S(a, b )  T(b) = T ( a )  for any T ,  (60) may 
be used to calculate the expansion amplitudes as 

Z,(t) = fdxdy[Hu,*U‘+H~,*w’+g,h,*h‘]. (65) 
Replacing this expansion in the integrals of (551, and using (60) and (63),  we obtain 

I n  summary, the integrals of Po and E, are constants of motion but are not 
positive-definite; the integral of Eo - Po U is positive-definite but not constant (see 
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the footnote on p. 469) ; and i f  there exists a value of a such tha.t the intcgral of E, - at:, 
is positive-definite, then the flow is stahle 

5. Stability conditions on the sphere 
As mentioned in 9 1 ,  the main weakness of the model in this paper is its vertical 

structure. The &plane was used just for simplicity, and in this section we show how 
all the above results are easily generalized to a truly spherical geometry. 

Let (r ,  y)  be, for the moment, any pair of orthogonal cwrvilinear coordinates in 
a sphere with radius equal to a.  It is convenient to use locally isotropic coordinates, 
i .c .  such that the differential displacement and horizontal gradient opcrator have the 
form 

here y (s ,  y) is a geometric coefficient that  must satisfy 

Y 2  (azz + dyu)  In y + 7 = 0 
U 

in order for the cross-derivatives of the unit vectors to be equal (see for instance 
appendix 2 of Batchelor 1967). 

The equations of motion take the form 

D,U - [f+ y-  2 ( u  dz y - u d,y)] v + gry-'d,h = 0, ( 6 9 4  

D,v+If+y-2(vazy-ua,y)]u+gry-layh = 0, (696) 

D,h + hy-2[d,(yu) + a,(yu)l = 0, 

where 1lt = at+uy-1a,+vy-1a,. 

Alternatively, the set (69) may be written as 

a, u - ghv + y-' a,(g,h + ;u2+ $2) == 0, 

a, v + ghu + 7-1 d,(g,h + ;U2 + $v2) =: 0, 

(69 a)' 

(69h)' 

a,h+y-Z[d,(yuh)+a,(yvh)] = 0, (69c)' 

where 9 = [f+r-2aa,(yv)-y-2a,(yu)l/ 'h. (71)  

For an extrapolar zonal current, it is convenient to usc' a Mercator projection, for 
which longitude and latitude are given by 

X Y 
U a q5 = -, 0 = arctan sinh -, 

and the geometric cocfficient is 

y = sech = cos 13 (73) 
U 

(and t h u s  y - l d ,  = a-l a/af?)..f T h e  Coriolis parameter is given by 

(74) 
f = 252 tanh -, Y 

U 

where 2n/SZ is thc rotation period (86164 s for the Earth) 

t For a circumpolar current, it is better to use the (say, South) polar projection, for which 
(z,yl = 2a tan ($-r+.@) (cos q$, sin $1, and y = 4a2/(4a2+z2+y2)  = +(l -sin 8) .  The results of this 
section can obviously also he derived using ordinary spherical coordinates, which, however, are not 
isotropic. 
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Taking the curl of (69a, b)’ i t  follows that (17a)  still holds, with the material 
derivative given by (70). Equations (17b, c )  are replaced by 

j d y y 2 ( E )  = const, j d y y 2 ( M  cos 8) = const. (75a, b )  

The factor y 2  is here just to make dxdy y 2  the differential of area on the sphere (see 
(67a)), but the factor cos8 (which happens to be equal t o y )  in (75b) is quite a different 
matter. It makes 

The integral of Qah, which is proportional to thc total volume, is independently 
conserved, in virtue of (69c); whereas the first term on the right-hand side is the 
angular momentum, because u+Qu cos 0 is the total zonal velocity and a cos i9 is the 
distance to the rotation axis. Thus zonal-momentum conservation on the P-plane is 
an approximation to angular-momentum Conservation on the sphere ; a similar thing 
applies to the pseudomomenta. Zonal-momentum M and pseudomomentum P 
conservation on the P-plane are related to invariance of the system under uniform 
infinitesimal translations in 2 (Ripa 1981 b ) ;  similarly, angular-momentum ( M  eos 8) 
and pseudomomentum ( P  cos 8) wnservation on the sphere are related to invariance 
of the system under infinitesimal rotations around the axis. 

The geostrophic balance and potential vorticity of the fundamental flow are 

(f+a-lU tan 6 )  U+g,- aH = 0, 
ae 

The equations of motion for the perturbation take the form 

(a,+ ~ ~ - l a , ) U ‘ - - ~ ~ ’ + ~ , ~ - l a , h ’  = 0, (78a)  

(a,+ Uy- ’d , ) v ‘+[ f+~-~2U tan O)u’+g,y-ld,h’ = 0, (78b) 

(a, + uY-1 a,) h’+ y-2[a,(u’Hy) + a , ( v ’ ~ y ) l  = 0. (784  

From thcse equations one deduces 

(a, + uy-1  a,) p’ + v’y - l au& = 0 ,  

Sdyy2[a,(E,)+H2U(Q’v’)] = 0, (79b)  

Jdy y2[8,(M’) +HZ(q’v’)] cos 8 = 0, 

p’ = [y-2 d,(yv’) - y-2 d,(yu’) - &h’)/H, 

(79a)  

(79c) 

(80) where 

but E and M’ are the same as before, ( 2 0 b )  and (20c) .  iY is not positive-definite, but 
i t  may be shown that if there exists a real value of a such that 

1U-z cos 81’ < g,H* E-aM’ cos 0 0. (81 ) 

Finally, defining, as before, A to be the O(t)  meridional displacement from the 
fundamental flow, and using (79), we obtain 

j (E ’ -aM’  00s  8 + & H 2 ( m  cos 8- l i )y - ld ,QA2)  = const. (82) 

Whence, if there exists any value of a such that 

[a c ~ ) s B -  U(y)ld,&(y) 2 0 and [a cos 8- li(y)]’ < g,H(y) ,  (83a,  b )  

then the $ow i s  stable 
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Weaker sufficient stability conditions are obtained as corollaries of this one: viz 
choosing a = max ( U  sec 0), which results in 

y- l  a,$ 2 0 for all y (condition (i)) ,  (84a)  

(84b) 

y - l  a,$ < 0 for all y (condition ( i ) ) ,  (85a) 

(85b)  

Finally, these two corollaries of (83) may be combined into an even weaker stability 
condition (using max ( A  + B )  < max ( A )  + max (B)  and min ( A  + B)  2 min ( A )  + 
min ( B ) )  : 

max (Usec 0) < min {[U+(g,H)k]  sec 0) (condition (ii)); 

or making a = min (U  sec e), which yields 

min (U  sec 0)  2 max {[U-(grH)i] see 0) (condition (ii)). 

viz y-ld,Q does not change sign (condition ( i ) ) ,  (86a)  

max (U  sec 0) - rnin ( U sec 0)  < min [(g,H)* sec 01 (condition (ii)). (86 b )  
As shown in $4, for the case of the P-plane, if the gradient of potential vorticity 

does not change sign, then a pseudo-energy Eo and an angular pseudomomentum 
P, cos 0 may be defined which are, to lowest order, quadratic in the deviation from 
the fundamental state. It then follows that (82) is the lowest-order contribution to 
the exact law j d y  y2(Eo-  aP, cos 0) = const. 

Finally, for longitude-independent perturbations i t  follows that 

and thus another sufficient condition for inertial stability is that the expression 
between between square brackets be non-negative everywhere. 

6. Discussion 
The two conditions (i) and (ii) described in the abstract of this paper guarantee 

the stability of a zonal one-layer flow on the P-plane: on the sphere, ‘velocity’, 
‘ momentum ’ and ‘pseudomomentum ’, should be changed to ‘angular velocity ’, 
‘angular momentum ’ and ‘angular pseudomomentum ’. For the example of the 
Gaussian equatorial jets, the more restrictive condition may be either ( i )  or (ii), 
depending on the width and direction of the flow. Thus for very narrow jets flowing 
in either direction and very wide westward jets, condition (i) is violated a t  smaller 
amplitudes than (ii) is. 

On the other hand, consider the case of a westward jet with the shape of a 
longitude-independent Kelvin wave. The potential vorticity is equal to the planetary 
one divided by the mean depth, and thus condition (26a)  with a = 0, - Ua,Q 2 0 
is satisfied for any strength of the jet. For the flow to be unstable, then, con- 
dition (26b) must be violated; namely, i t  must be supercritical in some region 
(which turns out to be a neighbourhood of the equator), so that the pertur- 
bation energy E is not positive-definite. Moreover, the conserved pseudo-energy 
E, ( -  E - ( U P  f a,Q)qf2 > E )  must not be positive-definite. (The required amplitude 
is 

Cairns (1979) has shown that some instabilities of parallel flows are related to the 
existence of perturbation waves with negative energy, i.e. that  lower the total energy 

U(O)/C < - # ( z / 5 -  1 )  x -06180.)  
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of the system (a well-known phenomenon in plasma physics). (More specifically, the 
onset of the instability is a t  the point where two waves with energies of opposite signs 
have equal wavenumbers and frequencies.) Ripa & Marinone (1983) show that the 
equatorial jet discussed in this paragraph is indeed unstable (by actually solving the 
eigenvalue problem) ; the energetics of the problem and its relationship with that of 
Cairns (1979) are discussed by Marinone & Ripa (1983). (In both cases, the term 
responsible for a negative energy is (Uu‘h’) ; for both the kinetic and potential 
energies in Cairns’ case, but for only the kinetic energy in the problem of this paper, 
because in a system that is Lagrangian in the vertical (isopycnal vertical coordinate), 
potential energy is exactly quadratic (Ripa 1981 b).)  

Similarly, for an eastward Gaussian jet with the width of a Kelvin wave or wider, 
the gradient of potential vorticity is always positive, and thus condition (26a), 
(a-  U ) d y Q  2 0 ,  with a 3 max U = U(O), is satisfied for any amplitude of the 
current. Thus, for the flow to be unstable, condition (26b) must be violated, i.e. i t  
must be (a-  U)2  > g,H in some region (which turns out to be in the neighbourhood 
of infinity), for which i t  follows that U(0)  > c .  (At the critical amplitude, it is U(0)  = c 
but U(y) < g,H(y))i ,  and both conditions (26) are satisfied for 01 = c.) If the flow is 
unstable then the integral of Eo-aP, is not positive-definite for any value of a. 

Finally, E ,  and Po conservation may assure inertial stability for amplitudes well 
beyond the maximum one for the Coriolis parameter and potential vorticity to be 
of equal sign. For instance, consider a very narrow westward jet with an exponentially 
decaying offshore structure, from a zonal coast where the Coriolis parameter is f o .  
(Say, fo  > 0 and L 4 c/ fo ,  f o / P .  The current may be in the equatorial or extra- 
equatorial region, depending on the value of f t l p c . )  For U(0)  < - f o  L the Coriolis 
parameter and the potential vorticity have opposite signs in a region, next to the 
coast, of width L In [- U(0) /L fo] .  However, the gradient of potential vorticity is 
positive for any (negative) amplitude U(O), and total E, is positive-definite for 
U(0)  3 - c + O ( L 2 ) .  Therefore, if the flow is unstable, it must be 
U ( 0 )  < - c+O( l? )  4 -f,L. 

I am grateful to S. G. Marinone for many helpful discussions, to S. Ramos and 
M. Noriega for drafting the figures, and to D. Andrews and R.  Hughes for comments 
on the first draft of the paper. I want also to  thank an anonymous referee who made 
several suggestions and called my attention to the papers by Arnold (1965), 
Bretherton (1966), and Blumen (1968, 1978). 

Appendix. Evaluation of the stabil’ty boundaries 
Consider the jet (35) with f = /?y and f o  = /?yo 3 0 (the case yo = 0 corresponds to 

the Gaussian equatorial jet (34)). The function r# has values between 0, for y2 + co, 
and h ( A  2 - l ) ,  a t  y2 = y;, and it  satisfies 

J 

The potential vorticity and its meridional gradient are given by 

where 
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Condition ( i ) .  In order to find the minimum amplitude for the expression between 
= 0 and a,[. . . ]  = 0, which yields square brackets in ( A 3 )  to vanish, we solve for [ .  . 

h f L 2  = -1, y2 = 0, (445) 

pZ$ = l - p 2 & ( l - p ' + p 4 ) ? ,  (l-p.")p@J'/lC == 1- Cc2@ + 2#) ( A 6 )  

valid for narrow easterlies (p > 1, h < 0);  and 

(and h calculated, from the values of 4 and /3y2/c, using (3!j)), valid for wide castcrlics 
(p < 1, h < 0) and narrow westerlies (p > 1, h > 0). If yo + 0 and y2 < yo2 in (A 5) or 
(A6),  then the solution is that  of dy&(yo) = 0, i.e. 1..  . ]  = 0 in (A3) ,  with smallest 141, 
viz 

These equations must he used instead of (A6) for wide emterlies (po < p < 1, A < 0) 
and narrow westerlies (p 2 ph > 1, A > 0 ) ,  where po and ph are the two values of p 
for which y2 = yt in (A6).  For narrow easterlies (A7)  must be used instead of (A5),  
and is valid as long as 2p > go ,  which happens for 

If By; > 3 - 2 2 / 2 ,  then there are no narrow easterlies for which the gradient of 
potential vorticity changes sign. 

Condition ( i i ) .  For the jet ( 3 5 ) ,  conditions (276)  and ( 2 9 h )  are equivalent because 
the extrema of L'(y) and H(y) occur a t  the samc latitudes. Those conditions are 
satisfied for 

- 2  1 
< A < - .  

1+(1+4p2)'. P 

Condition ( i i i ) .  This is satisfied if 1 +p2$ 2 0 in (A2),  which happens for 

h 2 p - ' ,  p > 1 (y2 = y;); all h , p  < 1. (A 10) 
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